Using Software Transactional Memory In
Interrupt-Driven Systems

Michael J. Schultz

Department of Mathematics, Statistics, and Computer Science
Marquette University

Thesis Defense

Michael J. Schultz Using STM In Interrupt-Driven Systems

Introduction

Thesis Statement

Software transactional memory can be used in interrupt-driven
device drivers as a method to automate and provide
fine-grained synchronization between the upper and lower
halves.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Operating Systems

@ operating system—Iow-level software on a computer.

@ application programming interface—set of functions a
programmer can use.

@ device driver—deals with high-level APl and low-level
hardware.

@ interrupt—external signal to processor.
@ jitter—variations in delay of interrupt handling.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Jitter Avoidance

Don’t disable interrupts!

Michael J. Schultz Using STM In Interrupt-Driven Systems

Jitter Avoidance

Don’t disable interrupts!

global integer our_var =1

function increment (void)
our_var++

Michael J. Schultz Using STM In Interrupt-Driven Systems

Jitter Avoidance

Don’t disable interrupts!

global integer our_var =1 .data

.globl our_var

function increment (void) our_var: 0x0001
our_var++

.text

increment:
1w s0, Ox4c(zero)
addiu s0, s0, 1
sw s0, Ox4c(zero)
3 ra

Michael J. Schultz

Related Work

Transactional Memory

@ Transactions began in database community.

@ Brought to systems as concurrency control for
multiprocessors.
@ Hardware TM
o Suffer from physical memory boundaries.
@ Software TM

e Blocking vs. non-blocking implementations.
@ Blocking STM allows progress guarantees.
@ Hybrid TM
e HTM is expensive and restrictive.
e STM needs more space and time to compute.
e Hybrid TM takes advantages from both (speed and
reliability).
@ Also takes disadvantages.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Related Work

Operating Systems

@ Lock-free kernels: Synthesis and Cache.
@ Use CAS and DCAS opcodes for shared data structures.
@ TxLinux uses HTM and cxspinlocks.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Related Work

For Further Reading...

B
[
[
B
B

Massalin and Pu. “A lock-free multiprocessor OS kernel.”
Tech. Rep. CUCS-005-91, Columbia University.

Gray and Reuter. Transaction Processing: Concepts and
Technigues, Morgan Kaufmann, First Edition.

Herlihy and Moss. “Transactional memory: Architectural
support for lock-free data structures.” ISCA '93.

Rossbach et al. “TxLinux: using and managing hardware
transactional memory in an operating system.” SOSP "07.

Ni et al. “Design and Implementation of Transactional
Constructs for C/C++.” OOPSLA '08.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Major Contributions

@ Modernized port of the Xinu kernel for 1A-32.

@ Method for integrating STM library into kernel.
@ Embedded Xinu augmented with STM:
e “Transactional Xinu.”

@ Evaluation of interrupt-driven device drivers in
Transactional Xinu.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Outline

0 Design and Implementation
@ Critical Sections
@ Transactional System

Michael J. Schultz Using STM In Interrupt-Driven Systems

Outline

0 Design and Implementation
@ Critical Sections
@ Transactional System

9 Performance Results

@ Measurements
@ Testing Methodology

Michael J. Schultz Using STM In Interrupt-Driven Systems

Outline

0 Design and Implementation
@ Critical Sections
@ Transactional System

e Performance Results
@ Measurements
@ Testing Methodology

Q Summary and Future Work

@ Summary
@ Future Work

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Device Driver Structure

Upper half with
thread-level API

i
9

Interrupt-driven
Lower half

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Critical Sections

A critical section is a piece of code that accesses shared data
or resources in the system and must not be accessed by two or
more processes simultaneously.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Critical Sections

Properties

@ atomically—perform indivisible operations
“‘instantaneously.”

@ consistent—no illegal system state will exist.
@ jsolation—no thread will see intermediate state.
@ durable—no reversion after completion.

These are known as the ACID properties.
We are only interested in the A, C, and | properties.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Critical Sections

Problems

@ Deadlock
OROIR ONOI ONOIE
5 S g
Al [B]] ¢ [A] [B]| ¢ |[A] [B]] ¢ |[A] [B]
t t t t

@ Priority Inversion

Michael J. Schultz Using STM In Interru, ven Systems

Design and Implementation Critical Sections

Transactional System

Critical Sections
Jitter

@ Variations in the amount of time the system takes to
respond to incoming interrupts.

0 Critical Section F Interrupt Arrival 1 Interrupt Completion

Do ———
Interrupt . . ——+' H:! ——H H@ Pttty

Michael J. Schultz Using STM In Interrupt-

Design and Implementation Critical Sections

Transactional System

Critical Sections

Transactional Memory

@ STM library assures that the ACI properties are followed.

@ Compiler and library automatically handle rollbacks and
commits.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Critical Sections
Interrupt Handling

@ Interrupts are implicitly given highest priority in system.

@ STM can be set up to give interrupt-driven transaction
highest priority.

@ User-level thread will not prevent interrupt from entering.

@ /O operations are difficult because they cannot be taken
back.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Embedded Xinu

The Beginning

@ Xinu was developed 25 years ago by Doug Comer.

@ Provide a easy-to-understand O/S for teaching and
research.

@ Under 20,000 lines of code, but still a rich experimentation
platform.

@ lightweight thread model, shared memory space,
preemptive multitasking priority scheduler, synchronization
primitives, IPC, and device drivers.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Transactional Xinu

@ Built on top of Embedded Xinu.
@ Provides needed components for transactions.

e POSIX-thread library.
e Thread-local storage.
o Intel’s STM library.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

POSIX-thread library

@ Keep the Xinu model: lightweight.
@ pthread_key_create

@ pthread_setspecific

@ pthread_create

@ pthread_join

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Interrupt-local Storage

@ Thread-local storage gives private memory to every thread.

@ Interrupts push state onto stack, does not update GS
register.

@ Interrupt-local storage switches GS context for interrupts.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Transactional Library

@ Several modes of operation: optimistic, pessimistic, serial,
and obstinate.

@ Optimistic and pessimistic are “normal” modes.
@ Serial mode works with legacy and irrevocable operations.
@ Obstinate allows for “stubborn” transactions.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Transactional Library
Single Global Lock Atomicity

@ Creates an equivalence between global lock code and
atomic code.

@ STM library actually uses SGLA for serialized transactions.

__tm_atomic { wait (global_lock);
Statements; —— Statements;
} signal (global_lock);

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Transactional Library
Obstinate Mode

@ Library lets an obstinate transaction beat all conflicting
transactions.

@ Provides an interface allowing the programmer to declare
an obstinate transaction.

@ Transactional Xinu uses this in interrupt handlers.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Transactional Library
Versioning and Logging

@ Read versioning tracks the version number of a variable.

@ Writing will obtain a lock and increment the version
number.

@ Undo logging saves original values to private memory.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Desig

nd Implementation

Transactional Library

Critical Sections
Transactional System

Versioning Example

Reader Code

global integer our_var

local integer my_var
atomic
if (our_var = 1)
my_var =
else
my_var = 1

{} — {our_var : 2}

our_var + 1

el J. Schultz

Writer Code

global integer our_var

atomic

our_var = our_var + 1

{} — {our_var : 2} — {our_var : 3}

Using

Design and Implementation Critical Sections

Transactional System

Transactional Library

Two Phase Locking

@ 2PL for contention manager.

@ Maps every contended memory location to a unique lock.
@ Mapping performed at runtime, takes ~4 MB of memory.
@ Transactional Xinu minimizes size of atomic sections.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation Critical Sections

Transactional System

Transactional Device Drivers

@ Wrap upper half critical sections in tm_atomic.
@ Wrap lower half shared data in tm_atomic.

@ Every function call and incidental function call must be
re-instrumented.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation

Critical Sections
Transactional System

Code Size Differences

Kernel image | Non-STM STM | Increase %

raw 365,628 | 595,251 | 229,623 | 62.80%

stripped 351,048 | 540,504 | 189,456 | 53.97%
excluding STM library (170,869 bytes)

raw 365,628 | 424,382 | 58,754 | 16.07%

stripped 351,048 | 369,635 | 18,587 | 5.29%

Michael J. Schultz Using STM In Interrupt-Driven Systems

Measurements

Performance Results Testing Methodology

Transactional System

@ Transactional Xinu was built to run on real hardware,
available today.

@ Built on mid-model Pentium 4, 3.0 GHz processor
(“Northwood”).

@ No BIOS calls or Linux code used behind-the-scenes.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Loading

~
#include <stdio.h> ~~
ioclude <nenor i

Performance Results

the Kernel

#include <stdio.h>
#include <nenory.h>
#include <nutex.h>

nutex global_lock;
int global var:

int matn(int n, char *+argy)
int local var = 0;
wait(global tock);
global var += 1
al global var + 2;
signal (global_Lock)
i1 (ocal var >= 2)
local var = 0;

return local var:
)

linker

et v

return local
)

return Local_var,
)

Measurements
Testing Methodology

data
global lock: 0x00
global ver: 0x00

text
pushl sebp
novl %esp, seby

4, vesp
sqlobal var, weax

webe, Slocal var

pusht sglobal Lock
signal

54, Nesp

Slocal var, veax

U seax, 82, 1f

bt

TFTP

ael J. Schultz

Linux
Bootloader
gzip Bt is
—_—
///A
_—

ven System:

il

Measurements

Performance Results Testing Methodology

Measurements

@ On-chip: read timestamp counter (readtsc).
@ In-system: timer counters (thread time, monotonic time).
@ External: min, avg, max, mdev of round-trip time.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Measurements

Performance Results Testing Methodology

Ping Testing

@ Packet enters machine and raises interrupt (RX_TSC).
@ Upper half call transfers incoming data (READ_TSC).
@ Upper half call transfers outgoing data (WRITE_TSC).
@ Final call in lower half of driver (Tx_TSscC).

Michael J. Schultz Using STM In Interrupt-Driven Systems

Measurements

Performance Results Testing Methodology

Ping Testing

Other notes

@ Data gathering occurs at runtime, stores in memory until
needed.

@ Timer interrupt fires every 1/10 of a millisecond,
lightweight.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Measurements
Testing Methodology

Performance Results

Ping Testing

Ping 1000 Millisecond Interval

1.4

—| B Average (Non-STM
O Average (STM)

milliseconds
08 10 1.2

0.6
|

0.2

min avg max mdev

measure

ael J. Schultz Using STM In Interru, iven Systems

Measurements
Testing Methodology

Performance Results

Ping Testing

Ping 500 Millisecond Interval

1.4

—| B Average (Non-STM
O Average (STM)

milliseconds
08 10 1.2

0.6
|

0.2

min avg max mdev

measure

ael J. Schultz Using STM In Interru, iven Systems

Measurements

Performance Results Testing Methodology

Ping Testing

Ping Flood (0 Millisecond Interval)

1.4

—| B Average (Non-STM
O Average (STM)

08 10 12

milliseconds

0.4
|

0.2

|

min avg max mdev

measure

Michael J. Schultz Using

Measurements

Performance Results Testing Methodology

Ping Testing

Timestamp Counter

@ Machine specific
@ 100,000 micro-operations takes about 33 microseconds.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Ping Testing

TSC 1000 Millisecond Interval

micro-op cycles

20000 40000 60000 80000 100000

0

RX_TSC

Measurements
Performance Results

Testing Methodology

B Average (Non-STM
O Average (STM)

.

READ_TSC WRITE_TSC TX_TSC

critical region

Michael J. Schultz

Ping Testing

TSC 500 Millisecond Interval

micro-op cycles

20000 40000 60000 80000 100000

0

RX_TSC

Measurements
Performance Results

Testing Methodology

B Average (Non-STM
O Average (STM)

.

READ_TSC WRITE_TSC TX_TSC

critical region

Michael J. Schultz

Ping Testing

TSC Flood (0 Millisecond Interval)

micro-op cycles

20000 40000 60000 80000 100000

0

RX_TSC

Performance Results

READ_TSC

Measurements

Testing Methodology

B Average (Non-STM
O Average (STM)

.

WRITE_TSC TX_TSC

critical region

el J. Schultz

Using

Measurements

Performance Results Testing Methodology

Timing Testing

Methodology

@ Measuring jitter is difficult.
@ Lightweight timestamp counter at beginning of handler.
@ Packet generator, sending precisely timed packets.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Measurements

Performance Results Testing Methodology

Timing Testing

Results

Average | Minimum | Maximum | Std. Dev.
Non-STM | 30552911.53 | 30525638 | 30582946 | 13847.91
STM 30553291.98 | 30534954 | 30576856 | 13223.17
Difference 380.45 316 -6090 | -624.74

Michael J. Schultz Using STM In Interrupt-Driven Systems

Summary

Summary and Future Work FD Vs

Summary

@ HTM systems are hard to build, use STM instead.

@ Initial results suggest that TM might be able to reduce jitter.
@ Transactional Xinu is built to use Intel’s STM library and
compiler.

e Adds POSIX library and interrupt-local storage.
e Specially instrumented interrupt handlers (tm_atomic and
tm_callable)

@ Experimentation shows software overhead is minimal in
some scenarios.

e Many other components still disable interrupts.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Summary

Summary and Future Work A s

Future Work

@ More tightly integrate STM library to Embedded kernel
(scheduler, interrupts, etc.)

@ Test scaling to multi-core systems (what TM was designed
for).

@ Test scaling with multiple network interfaces (ZigBee, WiFi,
Bluetooth, GigE).

@ Analyze real-time properties, if interrupts can always be
received what happens (“interrupt overload”).

mschul@mscs.mu.edu
http://www.mscs.mu.edu/~mschul/

Michael J. Schultz Using STM In Interrupt-Driven Systems

http://www.mscs.mu.edu/~mschul/

	Design and Implementation
	Critical Sections
	Transactional System

	Performance Results
	Measurements
	Testing Methodology

	Summary and Future Work
	Summary
	Future Work

