
Design and Implementation
Performance Results

Summary and Future Work

Using Software Transactional Memory In
Interrupt-Driven Systems

Michael J. Schultz

Department of Mathematics, Statistics, and Computer Science
Marquette University

Thesis Defense

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Introduction
Thesis Statement

Software transactional memory can be used in interrupt-driven
device drivers as a method to automate and provide
fine-grained synchronization between the upper and lower
halves.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Operating Systems

operating system—low-level software on a computer.
application programming interface—set of functions a
programmer can use.
device driver—deals with high-level API and low-level
hardware.
interrupt—external signal to processor.
jitter—variations in delay of interrupt handling.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Jitter Avoidance

Don’t disable interrupts!

global integer our_var = 1

function increment(void)
our_var++

.data
.globl our_var

our_var: 0x0001

.text
increment:

lw s0, 0x4c(zero)
addiu s0, s0, 1
sw s0, 0x4c(zero)
j ra

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Jitter Avoidance

Don’t disable interrupts!

global integer our_var = 1

function increment(void)
our_var++

.data
.globl our_var

our_var: 0x0001

.text
increment:

lw s0, 0x4c(zero)
addiu s0, s0, 1
sw s0, 0x4c(zero)
j ra

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Jitter Avoidance

Don’t disable interrupts!

global integer our_var = 1

function increment(void)
our_var++

.data
.globl our_var

our_var: 0x0001

.text
increment:

lw s0, 0x4c(zero)
addiu s0, s0, 1
sw s0, 0x4c(zero)
j ra

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Related Work
Transactional Memory

Transactions began in database community.
Brought to systems as concurrency control for
multiprocessors.
Hardware TM

Suffer from physical memory boundaries.
Software TM

Blocking vs. non-blocking implementations.
Blocking STM allows progress guarantees.

Hybrid TM
HTM is expensive and restrictive.
STM needs more space and time to compute.
Hybrid TM takes advantages from both (speed and
reliability).

Also takes disadvantages.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Related Work
Operating Systems

Lock-free kernels: Synthesis and Cache.
Use CAS and DCAS opcodes for shared data structures.
TxLinux uses HTM and cxspinlocks.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Related Work
For Further Reading...

Massalin and Pu. “A lock-free multiprocessor OS kernel.”
Tech. Rep. CUCS-005-91, Columbia University.

Gray and Reuter. Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, First Edition.

Herlihy and Moss. “Transactional memory: Architectural
support for lock-free data structures.” ISCA ’93.

Rossbach et al. “TxLinux: using and managing hardware
transactional memory in an operating system.” SOSP ’07.

Ni et al. “Design and Implementation of Transactional
Constructs for C/C++.” OOPSLA ’08.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Major Contributions

Modernized port of the Xinu kernel for IA-32.
Method for integrating STM library into kernel.
Embedded Xinu augmented with STM:

“Transactional Xinu.”

Evaluation of interrupt-driven device drivers in
Transactional Xinu.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Outline

1 Design and Implementation
Critical Sections
Transactional System

2 Performance Results
Measurements
Testing Methodology

3 Summary and Future Work
Summary
Future Work

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Outline

1 Design and Implementation
Critical Sections
Transactional System

2 Performance Results
Measurements
Testing Methodology

3 Summary and Future Work
Summary
Future Work

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Outline

1 Design and Implementation
Critical Sections
Transactional System

2 Performance Results
Measurements
Testing Methodology

3 Summary and Future Work
Summary
Future Work

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Device Driver Structure

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Critical Sections

A critical section is a piece of code that accesses shared data
or resources in the system and must not be accessed by two or
more processes simultaneously.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Critical Sections
Properties

atomically—perform indivisible operations
“instantaneously.”
consistent—no illegal system state will exist.
isolation—no thread will see intermediate state.
durable—no reversion after completion.

These are known as the ACID properties.
We are only interested in the A, C, and I properties.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Critical Sections
Problems

Deadlock
1 2

A B
t1

1 2

A B
t2

1 2

A B
t3

1 2

A B
t4

co
nt

ex
t s

w
itc

h

co
nt

ex
t s

w
itc

h

co
nt

ex
t s

w
itc

h

Priority Inversion

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Critical Sections
Jitter

Variations in the amount of time the system takes to
respond to incoming interrupts.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Critical Sections
Transactional Memory

STM library assures that the ACI properties are followed.
Compiler and library automatically handle rollbacks and
commits.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Critical Sections
Interrupt Handling

Interrupts are implicitly given highest priority in system.
STM can be set up to give interrupt-driven transaction
highest priority.
User-level thread will not prevent interrupt from entering.
I/O operations are difficult because they cannot be taken
back.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Embedded Xinu
The Beginning

Xinu was developed 25 years ago by Doug Comer.
Provide a easy-to-understand O/S for teaching and
research.
Under 20,000 lines of code, but still a rich experimentation
platform.
lightweight thread model, shared memory space,
preemptive multitasking priority scheduler, synchronization
primitives, IPC, and device drivers.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Transactional Xinu

Built on top of Embedded Xinu.
Provides needed components for transactions.

POSIX-thread library.
Thread-local storage.
Intel’s STM library.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

POSIX-thread library

Keep the Xinu model: lightweight.
pthread_key_create

pthread_setspecific

pthread_create

pthread_join

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Interrupt-local Storage

Thread-local storage gives private memory to every thread.
Interrupts push state onto stack, does not update GS
register.
Interrupt-local storage switches GS context for interrupts.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Transactional Library

Several modes of operation: optimistic, pessimistic, serial,
and obstinate.
Optimistic and pessimistic are “normal” modes.
Serial mode works with legacy and irrevocable operations.
Obstinate allows for “stubborn” transactions.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Transactional Library
Single Global Lock Atomicity

Creates an equivalence between global lock code and
atomic code.
STM library actually uses SGLA for serialized transactions.

__tm_atomic { wait(global_lock);
Statements; −→ Statements;

} signal(global_lock);

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Transactional Library
Obstinate Mode

Library lets an obstinate transaction beat all conflicting
transactions.
Provides an interface allowing the programmer to declare
an obstinate transaction.
Transactional Xinu uses this in interrupt handlers.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Transactional Library
Versioning and Logging

Read versioning tracks the version number of a variable.
Writing will obtain a lock and increment the version
number.
Undo logging saves original values to private memory.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Transactional Library
Versioning Example

Reader Code

global integer our_var
local integer my_var

atomic
if (our_var = 1)

my_var = our_var + 1
else

my_var = 1

Writer Code

global integer our_var

atomic
our_var = our_var + 1

{} → {our_var : 2} {} → {our_var : 2} → {our_var : 3}

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Transactional Library
Two Phase Locking

2PL for contention manager.
Maps every contended memory location to a unique lock.
Mapping performed at runtime, takes ∼4 MB of memory.
Transactional Xinu minimizes size of atomic sections.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Transactional Device Drivers

Wrap upper half critical sections in tm_atomic.
Wrap lower half shared data in tm_atomic.
Every function call and incidental function call must be
re-instrumented.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Critical Sections
Transactional System

Code Size Differences

Kernel image Non-STM STM Increase %
raw 365,628 595,251 229,623 62.80%
stripped 351,048 540,504 189,456 53.97%

excluding STM library (170,869 bytes)
raw 365,628 424,382 58,754 16.07%
stripped 351,048 369,635 18,587 5.29%

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Transactional System

Transactional Xinu was built to run on real hardware,
available today.
Built on mid-model Pentium 4, 3.0 GHz processor
(“Northwood”).
No BIOS calls or Linux code used behind-the-scenes.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Loading the Kernel

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Measurements

On-chip: read timestamp counter (readtsc).
In-system: timer counters (thread time, monotonic time).
External: min, avg, max, mdev of round-trip time.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing

Packet enters machine and raises interrupt (RX_TSC).
Upper half call transfers incoming data (READ_TSC).
Upper half call transfers outgoing data (WRITE_TSC).
Final call in lower half of driver (TX_TSC).

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing
Other notes

Data gathering occurs at runtime, stores in memory until
needed.
Timer interrupt fires every 1/10 of a millisecond,
lightweight.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing
Ping 1000 Millisecond Interval

min avg max mdev

measure

m
ill

is
ec

on
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4 Average (Non−STM)

Average (STM)

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing
Ping 500 Millisecond Interval

min avg max mdev

measure

m
ill

is
ec

on
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4 Average (Non−STM)

Average (STM)

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing
Ping Flood (0 Millisecond Interval)

min avg max mdev

measure

m
ill

is
ec

on
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4 Average (Non−STM)

Average (STM)

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing
Timestamp Counter

Machine specific
100,000 micro-operations takes about 33 microseconds.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing
TSC 1000 Millisecond Interval

RX_TSC READ_TSC WRITE_TSC TX_TSC

critical region

m
ic

ro
−

op
 c

yc
le

s

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

Average (Non−STM)
Average (STM)

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing
TSC 500 Millisecond Interval

RX_TSC READ_TSC WRITE_TSC TX_TSC

critical region

m
ic

ro
−

op
 c

yc
le

s

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

Average (Non−STM)
Average (STM)

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Ping Testing
TSC Flood (0 Millisecond Interval)

RX_TSC READ_TSC WRITE_TSC TX_TSC

critical region

m
ic

ro
−

op
 c

yc
le

s

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

Average (Non−STM)
Average (STM)

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Timing Testing
Methodology

Measuring jitter is difficult.
Lightweight timestamp counter at beginning of handler.
Packet generator, sending precisely timed packets.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Measurements
Testing Methodology

Timing Testing
Results

Average Minimum Maximum Std. Dev.
Non-STM 30552911.53 30525638 30582946 13847.91
STM 30553291.98 30534954 30576856 13223.17
Difference 380.45 316 -6090 -624.74

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Summary
Future Work

Summary

HTM systems are hard to build, use STM instead.
Initial results suggest that TM might be able to reduce jitter.
Transactional Xinu is built to use Intel’s STM library and
compiler.

Adds POSIX library and interrupt-local storage.
Specially instrumented interrupt handlers (tm_atomic and
tm_callable)

Experimentation shows software overhead is minimal in
some scenarios.

Many other components still disable interrupts.

Michael J. Schultz Using STM In Interrupt-Driven Systems

Design and Implementation
Performance Results

Summary and Future Work

Summary
Future Work

Future Work

More tightly integrate STM library to Embedded kernel
(scheduler, interrupts, etc.)
Test scaling to multi-core systems (what TM was designed
for).
Test scaling with multiple network interfaces (ZigBee, WiFi,
Bluetooth, GigE).
Analyze real-time properties, if interrupts can always be
received what happens (“interrupt overload”).

mschul@mscs.mu.edu
http://www.mscs.mu.edu/~mschul/

Michael J. Schultz Using STM In Interrupt-Driven Systems

http://www.mscs.mu.edu/~mschul/

	Design and Implementation
	Critical Sections
	Transactional System

	Performance Results
	Measurements
	Testing Methodology

	Summary and Future Work
	Summary
	Future Work

