
Adding Software Transactions to the Kernel
By Michael J. Schultz with advising from Dr. Dennis Brylow

Transactional Memory
Transactional memory is intended to provide programmers with a lockfree mechanism that allows data reads and writes to occur atomically.
If we take the optimistic assumption that a set of reads and writes willsucceed, then it is only when a conflict occurs that steps must be taken tocorrect the mistake.
This approach makes thinking about program flow easier.
A simple analogy is issuing checks to a bank. Under mutual exclusion thefollowing steps must occur:
 issue a check;
 wait for the bank to process;
 receive confirmation (repeat).
Luckily, banks use transactions. This allows many outstanding checkswhile not preventing any from clearing (assuming the customer hassufficient money).

With transactional memory the programmer is free from having to worryabout acquiring locks in a specific order (deadlock) or causing importantcomponents run incorrectly (priority inversion).
Transactional memory can be provided through hardware support orsoftware libraries. Hardware systems place limits on the size and numberof transactions. While software systems take more overhead and runslower.

Marquette University
101

$20,000

Marquette University
102

$1,000

Mutex

Marquette University
101

$20,000

Marquette University
102

$1,000

Transactional

Prototype C Compiler and Library
Recently Intel research has developed and released a prototype C compilerand library with support for software transactional memory.
Their compiler adds keywords to the C language that delineate atomicsections of code.

wait(a_sem) ;
wait(b_sem) ;
global_a++;
global_b++;
signal(b_sem) ;
signal(a_sem) ;

__tm_atomic {
global_a++;
global_b++;

}

To make sure reads get the most recent data, the transactions keep a log ofold values to roll back to if a conflict occurs.
Naturally, these simplifications do not come for free. There are twoupfront costs:
1. The binary image must now contain and support the runtime librarythat the compiler depends on, and
2. At compile time, the code generated for __tm_atomic sections islarger in size than the corresponding lock based code.

However, this is a prototype compiler so these size considerations may bereduced in the future.

Embedded Xinu Kernel
Xinu was developed by Dr. Douglas Comer a simple and elegant tool thatcan be used as a teaching tool for students and as a launching point forresearch in operating systems.
At its heart, Xinu is an interruptdriven, multithreaded kernel optimizedfor use on an embedded system. This enables fine tuning of the system todemonstrate various concepts without being buried under millions of linesof code.
For this project we are targeting the x86 architecture. By choosing thisarchitecture we can take advantage of the prototype Intel compiler.
Currently we also have an Embedded Xinu kernelthat runs on Linksys Wireless Routers using theMIPS architecture.
In the future, we would like to write a simplesoftware transactional memory library that usesthe loadlinked/storeconditional opcodes.

STM for the Kernel
By using an small operating system at the core we are able to explore howSTM will work at the kernel level.
Our intentions is to apply software transactional memory to key portionsof the Xinu kernel.
Device drivers and interprocess communication use typical lockingmechanisms to ensure only one thread is communicating with a device orprocess. However these operations may also delay the arrival of interruptsin the system, creating jitter.
By using transactional memory we can be sure interrupts will not bedelayed and can safely read or write shared memory segments. Lesscritical processes will then have to retry their write before continuing.
While we acknowledge that transactional memory will not solve all theproblems of system development, we are interested in where it can help. Weseek to discover:
 how transactional memory can improve responsiveness;
 under what conditions will transactional memory fail, and why;
 is the additional overhead (in performance and code size) worth it?

This work is supported by the Wehr Foundation, Cisco Systems, the National Science Foundation, and viewers like you.

References
Maurice Herlihy and J. Eliot B. Moss. ``Transactional Memory: ArchitecturalSupport for LockFree Data Structures.'' From the 1993 Proceedings of theInternational Symposium on Computer Architecture.
Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E.Ramadan, Aditya Bhandari, and Emmett Witchel. ``TxLinux: Using andManaging Hardware Transactional Memory in an Operating System.'' Fromthe 2007 Symposium on Operating System Principles.
Bratin Saha, AliReza AdlTabatabai, Richard L. Hudson, Chi Cao Minh, andBenjamin Hertzberg. ``McRTSTM: A High Performance SoftwareTransactional Memory System for a MultiCore Runtime.'' From the 2006Symposium on Priniples and Practice of Parallel Programming.

