
Engineering	

A Passive Network Appliance
for Real-Time Network Monitoring

Michael J Schultz, Ben Wun, and Patrick Crowley
Applied Research Laboratory
Washington University in Saint Louis

This material is based upon work supported by the National Science Foundation under Grant No. CNS 096420

2

Engineering	

Million Mile View

n Network Operators want to know about their network

Internet	

End Host	

End Host	

... Router	

3

Engineering	

Mirrored
Traffic

PNA

An Example
n End host suddenly opens many connections

» What happened? Not sure, didn’t capture it – something bad?

Internet	

End Host	

End Host	

... Router	

4

Engineering	

Getting Data from a Network
n Capture complete packet traces? Nope.

n Sample packets? Nope.

n Special purpose equipment is costly/hard to maintain

Disk error: Out of space

G O O D E V I L G O O D E V

5

Engineering	

The Passive Network Appliance
n Re-evaluate what modern commodity hardware can do

n First kernel-space network monitor (that we know of)

n Specifically
» Present our kernel-space network monitor
» Explain our API that allows monitors to enforce policy at network

frame granularity
» Quantitative comparison between user-space and kernel-space

monitors

6

Engineering	

PNA Design

PNA System	

Decode	

 Active
Logging	

Real-Time Monitors	

Local IP
Monitor	

Connection	

Monitor	

Packet	

Monitor	

 Alert System Hooks	

Alert Subsystem	

Packet In	

 Packet Out	

Logging

Log Generation

Real-Time Monitoring

User-space

Kernel-space

7

Engineering	

Logging and Log Generation
n First and Foremost: Summarize the packet

» Where is the packet from?
» Gather up summary statistics (bytes, time, etc.)

n Flush records every 10 seconds to capture state of network

n Creates a file that can be aggregated to form continuous
view of network

Logging

Log Generation

8

Engineering	

Real-Time Monitoring
n Allows network administrators enforce policy as network

frames arrive

n Chain arbitrary number of monitors together
» Has no direct effect on summary logging
»  Indirect effect of slowing down the system

n Alerts can be generated at the moment malicious activity is
detected

Real-Time Monitoring

9

Engineering	

Implementation Details
n Linux Kernel Module

»  Implies that it will have less overhead than any user-space
monitor*

n Runs on commodity hardware
»  Servers are relatively low-cost (<$3000)
» Un-patched Linux Kernel

* We’ll get into that a bit later.

10

Engineering	

Decode
n Must be quick (every frame is logged)

Decode

Decode
flowkey =
<IP, 192.168.53.7,
 128.252.165.4,
 TCP, 63130, 80>

Step 1 Packet

Logging

11

Engineering	

Logging
n Must be quick (every frame is logged)

Logging

Packet
Step 2

Logging
hash(flowkey) Flow Table

No match

Match
Update
entry

Flow table: ~8 million entries

Real-Time
Monitors

12

Engineering	

Real-Time Monitors
n Every frame passes through monitors

n Enforce network policy at per frame granularity

n Example: Connection Monitor

Connection
Monitor

Remote
Host

Local
Host

×1000 conversations = probably bad

13

Engineering	

Extending the System
n Example: Find all HTTP traffic (on non-standard ports)

» Write a hook() function
» Look at payload for request method/response status
»  If found use pna_alert() to alert network operator

n Other functions
»  init() and release() prepare/destroy global resources
»  clean() runs every 10 seconds and can perform data maintenance

Your Monitor(s)!

14

Engineering	

Evaluation
n Tested with worst-case and real-world conditions
n PNA System

»  2.27 GHz “Nehalem” with 12 GiB memory
» Allows about 8 million flow table entries

LKPG

LKPG

LKPG

LKPG

LKPG

Aggregator PNA

Traffic Sources

LKPG = Linux Kernel Packet Generator

15

Engineering	

Laboratory Experiments
n Ran with “base,” “flow,”, and “real-time” monitors

Minimum sized
packets

Maximum sized
packets

Single flow Min table insertions
Max packets/second

Min table insertions
Min packets/second

Many flows Max table insertions
Max packets/second

Max table insertions
Min packets/second

16

Engineering	

Min-sized Packet Throughput

base flow real!time

Th
ro

ug
hp

ut
 (k

ilo
pa

ck
et

s p
er

 se
co

nd
)

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

one many one many one many

17

Engineering	

Throughput at Various Packet Sizes

64 128 256 512 1024 1514

Packet Size (in bytes)

Th
ro

ug
hp

ut
 (%

 o
f p

ea
k

ra
te

 a
t p

ac
ke

t s
iz

e)
0

20
40

60
80

10
0

18

Engineering	

Packet Entries/Drops (per second)

flow real!time

Pa
ck

et
s I

ns
er

te
d

or
 D

ro
pp

ed
 (t

ho
us

an
ds

)
0

20
0

40
0

60
0

80
0

inserts soft max!nic inserts soft max!nic

19

Engineering	

Back in Reality
n Real networks don’t see 1.48 Million packets per second

» Average packet size PNA sees is about 1000 bytes

n Graph of insertions (blue)/misses (orange)/drops (red)
» Per 10 second period

20

Engineering	

Kernel-space v. User-space
n Known that syscall overheads hurt performance

» Prior work minimizes syscall overheads (Deri [7], Braun [5])
» What if we avoid syscalls altogether?

n Measure single-core performance: capture, count, drop

Linux Default PF_RING Kernel Module

Throughput
(Mbps)

495.89
± 1.01

747.72
± 7.38

951.75
± 1.23

21

Engineering	

Summary
n PNA kernel module gives complete snapshots

n API for real-time monitors to enforce policy as frames arrive

n Evaluation under worst-case and real-world conditions
» PNA logs at worst 43% of traffic
» Typically captures all the traffic @ 1 Gbps

n Comparison of Linux default/PF_RING/kernel module

Code available at www.github.com/pcrowley/PNA

