
A Passive Network Appliance
for Real-Time Network Monitoring

Michael J. Schultz, Ben Wun, and Patrick Crowley
mjschultz@wustl.edu, bw6@cse.wustl.edu, pcrowley@wustl.edu

Washington University in Saint Louis
Department of Computer Science and Engineering

Saint Louis, MO 63130-4899

ABSTRACT
Network administrators lack the tools they need to under-
stand and react to their changing networks. This makes it
difficult for them to make informed, timely decisions regard-
ing network management, capacity planning, and security.
These challenges will only increase as networks continue
to gain in throughput, become more complex, and encrypt
more and more of their traffic.

This paper describes the Passive Network Appliance, or
PNA, which is our proposed solution to this problem. The
PNA provides snapshots of network behavior through time,
in a cost-effective manner. The PNA is implemented on
commodity hardware and can enforce network policy in real-
time at the granularity of network frame arrival. This paper
describes the system, and its evaluation in laboratory and
real-world deployments.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Net-
work Operations—Network Monitoring

General Terms
Design, Measurement, Performance

1. INTRODUCTION
This paper presents our Passive Network (Monitor-

ing) Appliance (PNA). Unlike other monitoring soft-
ware, our goal is to provide network administrators with
a comprehensive view of their network at any moment
in time, not just detailed analysis of specific protocols.
Our PNA is built on low-cost commodity hardware and
allows network administrators to grasp their network
in greater detail without much setup and configuration.
In this paper we:

• Describe and evaluate a kernel-space network mon-
itor in both a laboratory and deployed environ-
ment

• Provide a real-time monitoring API that allows
network administrators to enforce policy at the
rate of network frame arrival

• Perform a quantitative comparison of kernel- and
user-space packet throughput rates to motivate mon-
itoring in the kernel

We developed our PNA system because we saw a lack
of good accountability in current systems. Network ad-
ministrators often use packet sampling, which captures
a fraction of network traffic (Cisco’s documentation sug-
gests sampling 1 out of every 100 packets, which should
account for 80% of flows [2]). Unfortunately this sam-
pling technique can, and often does, provide a biased
view of the network towards large “elephant” flows [14,
18].

The only way to have an unbiased view of the network
is to capture and process every packet. This is difficult
to achieve given plateauing processor clock rates and
increasing network bandwidth. Additionally, end-users
are beginning to use secure communications (HTTPS,
VPNs, etc.) that make most forms of packet inspection
obsolete. Section 2 further discusses our motivation for
this problem.

While hardware solutions to some of these problems
exist, they are typically expensive and can be difficult
to maintain; software solutions are easier to maintain
but are slow. Our PNA system finds a balance between
the two extremes by using an efficient kernel module
to provide a software system that is both fast and easy
to maintain. The high level details of our system are
discussed in Section 3. Section 4 then digs down into
the specific design details of our module and gives an
explanation of how our software can be extended to
support the specific application policy and monitoring
for network administrators.

Section 5 presents our evaluation of the kernel module
in a laboratory setting and discusses how our deployed
system performs in an open enterprise level network.
Our use of a kernel module is motivated in Section 6 and
shows why we chose to operate in kernel-space instead
of developing a user-space application.

2. MOTIVATION AND BACKGROUND
Network administrators currently use a hodgepodge

1



of networking equipment and software tools in their net-
works. These systems can be routers, network/port ad-
dress translators (NATs), or firewalls, among others.
Each of these systems can introduce strange behavior to
the network, fail unexpectedly, or be purposefully taken
down through attack vectors. While these systems may
provide some level of network accountability their focus
is either too narrow (ignoring packets) or too general
(skipping packets to maintain service guarantees) for
full transparency. Simply put: understanding how a
network is being used at any moment in time remains
a difficult problem.

As a motivating example of a failure, imagine a col-
lection of end-hosts connected to the Internet through a
network/port address translator (NAT). Suddenly, one
of the end hosts opens a large number of HTTP sessions.
This causes the NAT to become overloaded, dropping
new connections and denying service to all the end-hosts
behind the NAT. The NAT no longer provides the ser-
vice it should and is not able to log all the sessions that
were opened, making it impossible for the network ad-
ministrators to track down the misbehaving end-host.
This is a specific example of a general problem our sys-
tem is designed to detect in real-time: allowing network
administrators to quickly detect and correct potential
issues.

Another goal of our system is to provide account-
ability for different network types. Enterprise networks
can range from having an “open” policy to a “closed”
policy. An open network is one where network adminis-
trators allow all Internet traffic and avoid traffic shap-
ing and protocol restrictions. A closed network takes
the heavy handed approach and only allows connections
that match their defined network policy. In both situ-
ations, network administrators will want to account for
who and what consumes their network resources. Ad-
ditionally, a closed network should continuously audit
their traffic to ensure existing systems are properly im-
plemented and enforcing the correct policy.

In both a denial of service and accounting for network
traffic, network administrators want a monitor that pro-
vides the information quickly and accurately. To do
this, a network monitor must capture every packet sent
through the network. Unfortunately, most hardware
options are expensive or difficult to develop or modify
so they are not in wide use [1, 3]. Software options
are lower cost and offer more flexibility but are typi-
cally slower than their functionally equivalent hardware
counterparts [6].

In general, network administrators want a full view
of what their network at any given time. This way
they know what machines consume most of the network
bandwidth, what ports are most commonly used, what
ports transfer the most data, and what systems open
the most connections or sessions. The most accurate

Internet!

PNA!

End Host!

End Host!

...

Local!
Network!

Remote!
Network!

Router!
Mirrored!
Packets!

Figure 1: A PNA installation with the local net-
work connected to the Internet through a gate-
way router that mirrors packets to our PNA.

method is to capture every packet in the network and
log them to disk, but this takes a massive amount of
storage. An alternative is to store only the header data,
but this can still take a significant amount of storage
and writing to disk may not be able to keep up with
the data stream.

We wanted a network monitor that would satisfy the
following conditions:

• Run on a low-cost platform

• Able to keep pace with the 1 gigabit per second
bandwidth of typical enterprise level networks

• Offer network administrators the ability to easily
customize the monitor to their needs

We could not find a monitor that met all these condi-
tions, so we built our Passive Network Appliance (PNA).
Our PNA system puts a different spin on data collection
by making a compromise between the visibility we have
into the network, the details we store, and the moni-
tored time granularity for that network. This allows us
to use a low-cost commodity system that sees almost
all the packets, maintains logs for offline analysis, and
allows real-time monitors to enforce policy as network
frames arrive without significant development effort.

3. PNA DESIGN
This section discusses the design of each of the major

steps in our PNA system; a more detailed discussion
of the implementation is presented in Section 4. To
achieve our goal of a fast, low-cost, easy to maintain
system we built a Linux kernel module that hooks on
every packet received by the system. The core PNA
software is broken into two components: a two part
logging step that maintains both active and inactive
flow summary statistics and a real-time monitoring step
that can look for specific patterns.

Consider a PNA system that is installed at the gate-
way router between two networks, as seen in Figure 1.
The left portion of the figure shows the “local” network,

2



while the right is the “remote” network. Packets that
traverse the gateway router are mirrored to our PNA
software for processing.

3.1 Active Logging and Log Generation
Our PNA is designed to record statistics for every

packet in the network, so the active logging step occurs
first and ensures every packet is processed as quickly as
possible. This step of processing records the number of
packets and bytes seen in each network flow. When a
packet arrives at the system, it is passed to our PNA
software. The software determines the directionality
of the packet and whether it originates from a “local
IP”—an IP that resides on the monitored network. If
the packet belongs to an existing bi-directional flow, it
updates byte and packet counts for that flow and passes
the information to the next step. If the flow is new to
the system it creates an entry in the flow data table,
sets the initial byte and packet counts, records the first
packet arrival time for this flow, and then moves to the
next step.

Flow data is maintained in a table stored in main
memory for a fixed length of time. Periodically this
table is flushed to disk to provide a snapshot of what
the network looked like during that time window. Main
memory allows us to have a large hash table while still
maintaining flexibility. This translates into monitoring
many active flows and helps reach our goal of tracking
all packets in the network.

During the active logging step, the table that main-
tains flow entries is periodically flushed by a user-space
log monitor. This ensures entries in the flow table rep-
resent only the most recent data and allows the snap-
shots to remain small. A snapshot is used to represent
the state of the network during the preceding time pe-
riod and allows network administrators to look through
traffic data and perform post hoc analysis.

These snapshots are stored locally and then can be
aggregated to a central data store for offline processing.
Though certain details (such as packet arrival time and
packet payloads) have been removed, we believe that—
for offline analysis—the crucial data remains (active
IPs, active ports, traffic volumes, packet counts, and
relevant timestamps). This data can then be processed
to rebuild the approximate network conditions during
a specific time period. Moreover, long term trends in
network activity can be visualized and analyzed using
these logs to understand how the network is used.

However, offline log analysis will not be able to detect
or enforce network policy in real-time so we have also
developed a real-time monitoring system for analyzing
network frames as they arrive at our PNA.

3.2 Real-Time Monitoring
With the packet committed to memory, the PNA fo-

cus on the real-time monitoring step that enables net-
work administrators to enforce network policies as net-
work frames arrive. From the active logging step, the
packet and flow counters are passed to the real-time
monitoring subsystem. This system allows an arbitrary
number of monitors to be chained together for deeper
and more specific analyses. Conceptually, these moni-
tors are able to maintain private state between packets
or perform packet inspection as the network adminis-
trators see fit. Our current implementation uses two
stateful, real-time monitors:

• A connection monitor that tracks IP-to-IP connec-
tions between local and remote hosts

• A local IP monitor that tracks statistics about lo-
cal hosts that have been active

While these are the only monitors we have imple-
mented, our API allows a developer to add new mon-
itors that look at specific packet types or track other
data as they see fit.

Our real-time monitoring system hooks into an alert
system that enables the network administrators to log,
email, or isolate an offending IP the moment our system
processes and detects the violating packet.

4. PNA IMPLEMENTATION
Our PNA software is implemented as a Linux kernel

module split into an active logging step and a real-time
monitoring step that allows analysis of network frames
as they arrive through our API. This sections discuss
the implementation details and explains the decisions
we made while developing the PNA.

A PNA system runs on commodity hardware, so we
use a standard server-grade system with a multi-port
gigabit Ethernet card. Our system is co-located with a
core network router for an enterprise level organization
using a 1 gigabit per second link, an example which can
be seen in Figure 1 of the previous section. The router
mirrors both packets destined to the Internet and pack-
ets from the Internet to our device for capture and anal-
ysis. Once the packet is mirrored to our PNA, it enters
the system and follows the path outlined in Figure 2.
While our system could be installed in-line with the
packet flow, that has not been our goal nor have we ex-
plored how the system operates in that scenario. Once
our system has received a packet it begins processing
by decoding the packet headers.

Our system uses a kernel module built against a mod-
ern Linux kernel. A kernel module allows us to hook
into the Linux networking stack at a very early point
in processing, enabling us to achieve higher throughput
than standard user-space approaches (Section 6 covers
this in more detail). This approach comes with the risk
of using the Linux kernel API that may need to be up-
dated as the kernel continues to evolve. However we

3



PNA System	


Decode	
 Active 
Logging	


Real-Time Monitors	


Local IP 
Monitor	


Connection	

Monitor	


Packet	

Monitor	
 Alert System Hooks	


Alert Subsystem	


Packet In	
 Packet Out	


User-space	


Kernel-space	


Figure 2: Block diagram of the PNA software architecture.

have tried our best to minimize interactions with the
kernel so changes to the kernel API should be simple to
integrate into our module through patches or compile
time options.

4.1 Active Logging
Our software runs in kernel-space to enable quick,

lightweight packet processing by finding the flow key
for every packet and storing summary statistics in a
hash table. We take advantage of running in kernel-
space by hooking into the network stack during the
netif receive skb() function prior to the traditional
network layer handling. We chose this point because it
is the first opportunity during packet processing that is
not tied to the underlying device driver. It is also early
enough that the kernel has not spent excessive time
working through unnecessary packet processing steps.

Since we hook early in the networking stack, our soft-
ware must first decode the Ethernet, IP, and TCP/UDP
headers to extract the flow 5-tuple (source and desti-
nation IP addresses, source and destination ports, and
transport protocol). Next, we determine if the packet is
inbound or outbound based on the network prefix and
network mask the system has been configured to use.
By doing this we introduce the notion of “local” and
“remote” IP addresses and ports to our system. Local
addresses and ports belong to machines in the network
we are monitoring while remote addresses and ports be-
long to machines that are outside of our network and
control.

Figure 3 breaks down how a flow key will be gener-
ated for a connection between a local machine using
the IP 192.168.53.7 and port 53271 to talk to a remote
machine on port 80 at 128.252.165.4 over TCP. The top
of the figure shows the bi-directional TCP session with
the local machine on the left and the remote machine
on the right. The middle of the figure shows an

192.168.53.7	
 128.252.165.4	

53271	
 80	


TCP	


<0x0800, 192.168.53.7, 128.252.165.4, 6, 53271, 80>!
Source	
 Destination	


<0x0800, 192.168.53.7, 128.252.165.4, 6, 53271, 80>!
Source	
Destination	


Figure 3: Top: A TCP session between a local
and remote host. Middle: The local hosts sends
an “outbound” packet resulting in the same flow
key. Bottom: The remote host sends an “in-
bound” packet giving the flow key shown.

outbound packet whose source is in the local network
and is destined for an IP on a remote machine. In this
example, since the PNA is configured to treat IPs in
the 192.168.0.0/16 range it recognizes that the source
is a local machine and constructs the appropriate
flow key, as seen below the connection. The flow
key is <network-protocol, local-ip, remote-ip,
transport-protocol, local-port, remote-port>.
The inbound packet seen at the bottom of the figure,
will generate the same flow key—despite being in the
opposite direction. Again, this is because our PNA
is aware of the network to consider local. Since we
assume the PNA exists at a gateway, internally routed
traffic should not be seen (if we do see internal traffic,
the source IP will always act as the local IP and flows
will be monitored as uni-directional flows).

Using the flow key, a hash value is computed and we
find or create the corresponding entry in a large hash
table containing all the flows for the current time pe-
riod (10 seconds). If a collision occurs we use quadratic
probing until we find a clean entry or we have tested 32

4



entries1.
The hash table represents a 10 second snapshot of

the network conditions by accumulating data for indi-
vidual flows. Every flow entry accounts for the current
inbound and outbound bytes and packets, the times-
tamp of the most recent packet seen in that flow, and
the timestamp and direction of the first packet seen in
the flow to determine when and which IP initiated the
conversation. Additional summary data (such as the
state the flow claims to be in at the beginning and end
of the snapshot) could be added to the entry as well,
however we have yet to find a need for this.

Currently, the PNA can hold over 8 million flow en-
tries in memory for each 10 second snapshot period. For
most enterprise level networks this should be sufficient
for recording all the active flows. Once the active log-
ging step has updated the flow entry, the packet and
entry are passed on to the real-time monitoring step.

4.2 Real-Time Monitoring
The real-time monitoring system provides a simple

API for developers to implement a monitor that looks
at network frames as they arrive and detect specific mis-
behavior. This step follows directly after the active log-
ging step completes. Multiple monitors can be chained
together sequentially with each monitor performing a
separate analysis on the packet or flow. Our current im-
plementation consists of two real-time monitors (a con-
nection monitor and local IP monitor) and allows the
additional stages conforming to our API to be added by
network administrators. If any of the monitors detect
malicious or abnormal behavior they are able to hook
into our alert subsystem to notify the network admin-
istrators.

4.2.1 Connection Monitor
Our first monitor tracks unique IP-to-IP connections.

Tracking IP connections informs a network administra-
tor about how many conversations two machines are
having (many simultaneous sessions may indicate bad
behavior) or the volume of data transferred between two
specific hosts (copying a database off site). In these
cases, the network administrator may wish to know
about and act on this activity as soon as it begins hap-
pening; this is what our connection monitor is designed
to achieve.

When a packet is received by the connection monitor
it uses only the local and remote IPs from the flow key
to generate a hash value. This value is used as an index
into a connection table and finds or creates the corre-
sponding entry. An entry tracks the number of unique
sessions (transport layer port pairs), bytes, and packets
divided into transport protocol types and packet direc-
1An empirical analysis of our deployed system showed that
over 90% of flows are fulfilled within 32 attempts.

tion. Currently our connection table can hold over 2
million unique IP pairs for each snapshot of time. Peri-
odically, a function executes to reset the hash table for
the next time period.

After every entry modification of the connection ta-
ble, the system checks the configured thresholds and an
alert is issued if the threshold is surpassed. As an exam-
ple, if a connection has opened an excessive number of
sessions between two machines (an average connection
has about 3 sessions2), then our system detects that
violation immediately and issues an alert that can be
emailed to a network administrator or isolates the of-
fending IP. Once the connection monitor has completed,
the packet and exit status of the connection monitor are
passed to the next real-time monitor.

4.2.2 Local IP Monitor
The local IP monitor keeps track of the activity for

each unique local IP on the monitored network. The
data this monitor maintains allows network administra-
tors to monitor the number of ports, remote IPs, bytes,
and packets machines on their network connect or send.
This helps identify machines that are scanning for open
ports on a remote host or connecting to a large number
of external hosts.

An entry is keyed using the local IP address and, like
the connection monitor, computes a hash value and cre-
ates or selects an entry from the local IP table. Once
an entry is found it tracks the number of port-to-port
connections, bytes, and packets that a local IP has been
involved in (again, divided into transport protocol types
and packet direction). Currently our local IP table can
hold over 130 thousand entries for each snapshot of
time. A periodic function executes to reset the hash
table for the next time period.

Like the connection monitor, after each entry modi-
fication, configured thresholds are checked and an alert
is sent if a threshold is violated. If a local IP suddenly
tries to connect to many remote hosts, our system will
detect that the moment it happens and issue the alert.

4.2.3 Additional Monitors
Our real-time monitoring API provides the basic hooks

that allow network administrators to develop additional
monitors in a straightforward fashion. Both the con-
nection and local IP monitors were built around this
API. So far, our experience developing these monitors
has been simple and we believe other monitors can be
added without much trouble. Adding a monitor to the
system requires two steps: implementing the necessary
functions and then declaring those functions to the sys-
tem.

The functions a monitor is able to implement are:
2Again, this value comes from empirical data gathered from
our deployed system.

5



Function Description
init() Initializes data structures for a monitor.
release() Releases resources held by a monitor.
hook() Hooks on every packet processed by the

PNA. Takes a flow key, direction, socket
buffer, and data pointer as arguments.

clean() Periodic function for maintenance of
data structures used by a monitor.

pna alert()Sends an alert to a user-space process.
Takes an alert reason, violator, and
timestamp as arguments.

Table 1: Summary of our real-time monitoring
API functions.

init(), release(), hook(), and clean(). While this
may appear similar to the netfilter API, we want
to be able to hook on any packet—not just IP pack-
ets. What each of these functions does is summarized
in Table 1. The init() function executes once when
the kernel module is initially loaded, our monitors use
this to allocate memory for the hash tables and set the
memory to known values. Conversely, the release()
function executes when the kernel module is unloaded;
our monitors use this to free the memory allocated dur-
ing init(). The hook() function acts as the main
workhorse and takes several arguments:

• The flow key identifies the entry in the initial table
(during the active logging stage). This is conve-
nience data as it is simply data extracted from the
packet, but earlier steps have already determined
and set the local and remote IPs, local and remote
ports, and the transport protocol that the packet
uses.

• The direction of this packet. This informs the
hook as to whether this packet is entering the net-
work or exiting the network since the flow key has
abstracted the source and destination values.

• The kernel socket buffer contains the complete
packet data. This may be useful if a monitor
only wants to look at DNS (port 53) packets. It
can quickly check the port value based of the flow
key, and then perform further packet processing as
needed.

• The data argument can contain arbitrary data.
This allows meta-information to be passed from
one monitor to the next if needed. In our monitors,
this argument is used to pass the return value of
the previous monitor.

Finally, the clean() function executes periodically and
can be used to run any asynchronous maintenance rou-
tines; our monitors use the clean() function to reset

the hash tables every 10 seconds so thresholds operate
on 10 second intervals.

A simple monitor that requires no state only needs
to implement the hook() function, which executes for
every packet received.

When the necessary functions are implemented they
must be declared and told when to execute in our sys-
tem. The PNA will then begin normal monitoring with
an additional real-time step executing for each packet
received.

4.2.4 Alert Subsystem
Our alert system allows any monitor to check for ar-

bitrary violations and issue an alert causing the viola-
tion to be logged, emailed, or automatically handled
by existing systems. Both the connection and local
IP monitors have configurable thresholds and will issue
alerts when there is a potential violator on the network.
Alerts are issued using a function call to pna alert()
that takes a defined reason, the violating IP address,
and the timestamp of the violating packet. This alert is
then asynchronously forwarded to a user-space process
that emits a log message with the reason, violator and
timestamp and then can execute a program to perform
some action. We place no restriction on the program
that executes. The receiving program will be executed
with the three arguments above in user-mode so it does
not interfere with the normal operations of our system.

4.3 Log Generation and Analysis
Flows recorded during the active logging step are pe-

riodically flushed to disk through a user-space program
to allow records to be aggregated over time and from
multiple locations, allowing deeper analysis of the data.
To create the time snapshots of the table, prior to the
reset, a user-space program accesses the table and logs
each of the flow entries to a file on disk. Given our
current flow table size of 8 million entries, if during
a 10 second window our table is completely filled, we
calculate that the log file for that snapshot will be un-
der 300 MiB and take about 1.6 seconds to emit in the
worst case. Once the user-space logging process begins
executing our kernel module switches to a second in-
memory table so no packet is missed while the table is
being dumped to disk. Since the user-space program
runs separately from our kernel module, it does not in-
terfere with normal operations.

Once the log file is complete, it can be stored locally
or pushed to a central data store such as a file server or
storage cloud. As this data represents an identical view
to the data stored during the active logging phase, it
can be analyzed offline over larger time scales.

Our current offline analysis parses each log file and
provides daily reports for the “heavy hitters” in terms
of data volume and packet counts and also identifies IP

6



addresses which have connected to the most external IP
addresses. Even with these two simple analyses the in-
formation produced by our deployed PNA has been used
to identify interesting results in the network that may
have gone undetected in normal operation and has al-
lowed network administrators to better understand how
their network is used throughout the day.

5. EVALUATION
The evaluation of our system is twofold:

• We developed and tested the system described in
this paper in a laboratory setting

• We deployed an early version of our software and
have been running it in an operational setting for
the past 9 months

Both the laboratory and deployed systems were pur-
chased with the same hardware configurations. The
platform is a Dell PowerEdge R410 with two quad-core
Intel Xeon L5520 (“Nehalem,” no Hyper-Threading)
processors operating at 2.27 GHz with 12 GiB DDR3
(1066 MHz) system RAM, and a 160 GB 7200 RPM
hard drive for storing log files.

5.1 Laboratory Results
Our laboratory experiments looked at both correct-

ness (did the PNA capture all the flows we sent it) and
throughput performance. For our laboratory experi-
ments, we connected our system to the Open Network
Laboratory (ONL) infrastructure [20]. ONL allows us
to connect real machines together to replay trace files or
generate packet streams at gigabit speeds. During lab-
oratory testing we use the CentOS 5.5 distribution with
a custom configuration of Linux kernel version is 2.6.37
using the igb driver (version 2.1.0-k2) for the Intel
82576 network adapter. The configuration is based on
the suggestions by Gasparakis and Waskiewicz to dis-
able unneeded systems like sound, USB, and IPv6 [11].

To confirm that our system correctly captures all
packets when it is not fully loaded, we replayed a packet
trace using tcpreplay [19] and confirmed that the sum-
mary information that was logged matched what was
sent to the system.

5.1.1 Performance Evaluation
Our performance evaluation focuses on the worst case

traffic throughput, finding how the packet size affects
our throughput, and how many flows we are able to
record and how many flows we miss in the worst case.
Testing the system behavior under heavy load is done
using the Linux kernel packet generator (LKPG) [16].
The LKPG allows us to define exactly how the packets
are generated so we can have a consistent load through-
out testing. It is designed to generate packets as fast as
the end-host allows, but since this is less than our target

base flow real−time

T
hr

ou
gh

pu
t (

ki
lo

pa
ck

et
s 

pe
r 

se
co

nd
)

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

one many one many one many

Figure 4: 64 byte packet throughput in kilopack-
ets per second for the three monitor configu-
rations and two packet flow patterns with 95%
confidence intervals shown.

of 1 Gbps we have constructed an ONL network topol-
ogy that aggregates five packet generators together to
create the packet stream we want.

We ran four separate experiments to measure the
throughput for minimum sized Ethernet packets (64
bytes) and maximum sized Ethernet packets (1514 bytes)
using either a single flow (a single source/destination
IP and port) or multiple flows (many source IPs to
many destination IPs over many source-destination port
pairs). Each experiment was run 10 times for 60 sec-
onds each excluding a short warm-up period with per-
formance data collected every 10 seconds. For reference,
we abbreviate 64-/1514-byte packet sizes as min/max
and single/multiple flows as one/many in our figures.

Our evaluations run the PNA software in several con-
figurations:

• The “base” monitor hooks into Linux, decodes the
packet headers, and discards the packet. No en-
tries are inserted or updated in the table.

• The “flow” monitor does the same as the base
monitor plus it performs the active logging step
described in previous sections.

• The “real-time” monitor does the same as the flow
monitor plus it executes the two real-time moni-
tors we have developed to track connections and
local IPs.

Figure 4 shows the throughput, in kilopackets per sec-
ond, for 64 byte packets using the three monitor config-
urations with both one flow and many flows. The peak

7



throughput using 64 byte packets is 1,488.10 kilopackets
per second. This represents the worst case performance
bound for each of the three configurations. Both the
“one” and “many” flow patterns are worst case scenar-
ios for the network card and low level Linux networking
because they create large numbers of distinct packets in
the system. The packet throughput decreases as each
monitor configuration adds more code, especially when
the real-time monitors are added. The throughput also
decreases when the workload involves many flows, due
to the increased number of hash table insertions and
the additional time spent decoding headers and find-
ing open table entries. Since each packet belongs to a
unique flow, no hash table entry will be used twice. This
causes the monitor to check each entry until it reaches
the 32 entry probe limit.

Under these conditions, the base configuration shows
the worst case performance of our software with no load
beyond hooking into Linux and processing the packet
headers. This demonstrates the peak possible perfor-
mance of our PNA hardware. The flow configuration
shows the worst case performance when packets are in-
serted only into the flow table. The difference between
the “one” and “many” distribution patterns becomes
much more clear because each packet in the many pat-
tern must search for a new table entry instead of con-
tinually using the same entry. Finally, the real-time
configuration shows the performance when the system
performs both active logging and runs the connection
and local IP real-time monitors.

Figure 5 shows the throughput of our PNA under sev-
eral different packet sizes under worst case conditions
(i.e. each packet is part of a unique flow and packet ar-
rivals are at line rate). This demonstrates that the PNA
is able to process almost every packet once the packet
size is greater than 256 bytes. Note that throughput is
represented as a percentage of the maximum possible
throughput for a given packet size. For example, with
128 byte packets a gigabit link will be able to achieve
about 844 kilopackets per second and our PNA sees
about 644 kilopackets per second resulting in about 76%
of peak throughput.

To determine the percentage of packets dropped by
the PNA under worst case conditions we count the num-
ber of insertions that were successful and unsuccessful,
then calculate the maximum number of packets that
could be dropped at the network card. Figure 6 shows
these values with successful entries labelled as “inserts,”
unsuccessful entries labelled as “drops,” and network
card drops labelled as “max-nic.” To evaluate under
worst case conditions, 64 byte packets are generated at
line rate with each packet belonging to a unique flow.
A successful entry is defined as an entry that was in-
serted into the hash table and an unsuccessful entry is
one that looked for an entry in the hash table but could

64 128 256 512 1024 1514

Packet Size (in bytes)

T
hr

ou
gh

pu
t (

%
 o

f p
ea

k 
ra

te
 a

t p
ac

ke
t s

iz
e)

0
20

40
60

80
10

0

Figure 5: Throughput expressed as percentage
of peak throughput for packets sizes 64, 128,
256, 512, 1024, and 1514 under the “many” flow
pattern using the real-time monitor (with 95%
confidence intervals).

flow real−time

P
ac

ke
ts

 In
se

rt
ed

 o
r 

D
ro

pp
ed

 (
th

ou
sa

nd
s)

0
20

0
40

0
60

0
80

0

inserts soft max−nic inserts soft max−nic

Figure 6: Comparison of successful table in-
sertions against packets that could not be in-
serted by the PNA software and packets that
were dropped at the network card under worst
case traffic conditions.

8



03 06 09 12 15 18 21

Hour of day

0

200

400

600

800

1000
M

il
li

o
n

s 
o
f 

b
it

s 
p

e
r 

se
co

n
d

 (
M

b
p

s)

Figure 7: The throughput measured by our de-
ployed PNA node during a typical day.

not find a free entry before the probe limit was reached.
The theoretical number of packets drops at the network
card is calculated as the maximum number of 64 byte
packets per second less the number inserted in the table
less the number dropped in software. While the num-
ber of drops at the network card may look high, it is in
line with the throughput under worst case conditions.
Additionally, capturing 40% of packets under this work-
load is (by definition) 40 times better than sampling at
a ratio of 1:100 as recommended by Cisco documenta-
tion [2].

5.2 Deployed System Results
Our deployed system has been used in an open enter-

prise network for the past 9 months and has reinforced
its technical abilities as well as demonstrated how it
can be useful to network administrators. The proto-
type system uses the CentOS 5.5 distribution and runs
the default configuration of Linux kernel 2.6.34 and the
same Ethernet driver as the 2.6.37 kernel. Table en-
tries in the prototype version are much larger than the
updated version but are constrained to the same mem-
ory footprint. Thus, the prototype is only able to hold
about 65k flow entries, 32k connection entries, and 16k
local IP entries during a 10 second window. The inser-
tion/updating scheme is also much more cumbersome,
but it is designed to track the same data in real-time as
the system discussed in this paper.

Log files are emitted at 10 second intervals and are
compressed and sent off-site for analysis at 10 minute
intervals. Our system has proved sufficiently useful to
the network administrators that we have not had an
opportunity to upgrade to the current release.

A typical day’s traffic can be seen in Figure 7 with
the solid bars representing per hour average through-
put for inbound (blue) and outbound (green) traffic and
each dot representing the 10 second averages. While the
deployed system has produced a wealth of interesting
data, there are some caveats that we have discovered.

During heavily loaded periods of the day (full link uti-
lization), our deployed monitor drops about 1% of the
traffic at the network card. This still allows us to know
what the vast majority of network traffic is and we ex-
pect our new release to perform better.

Even with the older deployed PNA software, we have
been able to detect network anomalies that were un-
known or previously corrected and had since regressed.
An example of an anomaly our system has detected is
the periodic scanning of the network for printers with
open HTTP ports. Most new printers are not only
network-aware, but also contain a small web server with
status information, print queue access, and other po-
tentially confidential information. While a network ad-
ministrator will be aware of this, the person installing
the printer will not know the network policy and may
not think to disable or protect the web service allow-
ing remote hosts to have unauthorized printer access.
Increasingly many embedded devices that are network-
aware will send data or have open ports by default
that may be unknown to network administrators or in-
stallers, leaving the network open to both new and old
attack vectors.

An operational problem that we have yet to handle is
that the network operates a bi-directional 1 Gbps link
(2 Gbps in aggregate) and packets are mirrored from the
router to our system over a 1 Gbps link. If the network
realizes the full 1 Gbps bi-directional utilization, half
the packets that our system should see will be dropped
at the router. One solution to this problem is to use a
10 Gbps link between the router and our system. This
will add additional cost to a deployment and may not
be supported by all routers. Another solution is to split
the traffic over two 1 Gbps links and merge the streams
in our system. Early experiments have shown this to
be a feasible solution though we have not focused on
the performance aspects yet. In both cases, there are
operational consequences that must be considered by
network administrators before either option is deployed.

6. KERNEL-SPACE VS. USER-SPACE
Operating in kernel-space allows us to avoid system

call overhead to realize higher throughput than user-
space monitors on commodity hardware. The relatively
high cost of system call overhead for packet processing
was discussed by Luca Deri [7] and re-emphasized by
Braun et al. [5]. While most solutions try to minimize
the overhead, we decided to move the software into the
kernel and completely avoid the overhead.

For a typical developer, the difficulty and cost of ker-
nel development are too high and advantages too slim.
Our premise is that the PNA system has done the diffi-
cult part of kernel development and provides a straight-
forward method for developing real-time monitors that
can be used without much more hassle than a user-space

9



Kernel Module PF PACKET PF RING
951.75∓ 1.23 495.89∓ 1.01 747.72∓ 7.38

Table 2: Throughput of packet capture meth-
ods measured in megabits per second with 98%
confidence intervals.

program.
To quantify the throughput of the different approaches,

we compared our “base” kernel module against the de-
fault Linux kernel packet capture stack and Luca Deri’s
PF RING capture stack [7]. The base kernel module used
for this measurement study is the same as in our labora-
tory evaluation above. PF PACKET is the default packet
capture method for Linux kernel 2.6.37 and we use the
pcount program developed by Luca Deri to measure
throughput. PF RING is a packet capture method that
associates a ring buffer with a dedicated network card
to bypass the standard Linux networking stack allowing
less system call overhead resulting in higher through-
put. Performance of PF RING is monitored through the
pfcount program which mimics the behavior of pcount,
both programs are designed to simply count the number
of packets received and discard them without further
processing (like our kernel module).

It should be noted that when combined with Fusco
and Deri’s Threaded NAPI the PF RING implementation
can achieve full Gbps line rate in a multi-core configu-
ration [10]; however we are only interested in single-core
performance for this study. Our interest in single-core
performance is motivated by the fact that we believe
we can exploit multiple cores by taking a pipelining ap-
proach to increase the amount of work each monitoring
step can perform. Because of this we are focusing on
the single-core performance for this work and will focus
on multi-core performance in future work.

Table 2 breaks down the three packet reception rou-
tines we evaluated and their associated throughput mea-
sured in megabits per second with 98% confidence vales.
Both the PF PACKET and PF RING performance num-
bers closely match those found by Fusco and Deri in
their most recent evaluations [10, 8], differences can
be attributed to our custom kernel configuration and
different hardware specifications. The kernel module
achieves its high throughput by avoiding all unneces-
sary system calls and demonstrates the potential gains
we can get by running in kernel space.

7. RELATED WORK
The PNA is not the first work to focus on network

monitoring. However, most existing monitors that we
are aware of focus on quickly filtering network traffic to
achieve high-speeds and policy enforcement. Our PNA
system is designed to look at every packet to allow high-

speed auditing of network traffic.
The common trend in network monitoring has been

to focus on filtering the traffic so the monitor can have
sufficient time to deal with known protocols. Recently,
Sekar et al. have challenged that trend and suggest
that a minimalist approach may be as good, if not bet-
ter [18]. Their approach is to have routers implement a
small number of primitives to collect packet traces and
evaluate them offline instead of having several distinct
monitors competing for resources. Our approach pushes
collection off the router entirely, allowing the router to
focus on its core function, and put the emphasis on
collecting packet summaries followed by monitor spe-
cific functionality. We agree with their concerns that
focusing effort on developing distinct monitors, while
fruitful, may not be the best approach when looking for
a holistic view of the network.

7.1 Network Monitoring
The earliest major network monitoring system we

are aware of is Bro, which achieves high-speed moni-
toring by “judiciously leveraging packet-filtering tech-
niques” [17, 13]. Bro is based on libpcap, allowing it
to be portable across several platforms. libpcap is the
first step of processing and uses BSD Packet Filters [15]
to begin filtering the packet stream; the filtered packets
are then passed to an event engine that does some state-
ful processing. Events can be generated for any number
of reasons, usually by an exceptional occurrence, and
are passed to a policy interpreter. The policy inter-
preter uses the Bro language to express network policy
decisions and checks events against the written policy.
Our PNA explicitly avoids filtering packets in the pri-
mary stage because we want to provide network admin-
istrators with the most comprehensive view of the net-
work possible. Unlike Bro, we sacrifice cross-platform
portability by tying the PNA to Linux to gain the high
throughput we need.

Another popular network monitoring suite is Coral-
Reef from CAIDA [12]. This system focuses heavily on
usability by aggregating distinct traffic source (libpcap,
traces, device drivers) into a library so application de-
velopers can focus on processing not collection. Coral-
Reef provides a consistent API for C, C++, and Perl.
In their paper, the authors state that CoralReef pro-
vides a superset of the functionality of Bro. Unlike our
current system, CoralReef focuses on high level details
for processing traffic and avoids concentrating on high
speed throughput. We believe our PNA summary out-
put could be converted into an input format, allowing
the CoralReef monitoring suite to be used for offline
analysis.

Fraleigh et al. present the IPMON system for the
Sprint IP backbone [9]. This is a very large scale sys-
tem deployed at 40 Sprint Points-of-Presence across the

10



continental United States with the goal of collecting
and storing header information for every packet in a
stream with 5 µs timestamp synchronization. Mon-
itors are provisioned with 330 GB disk arrays which
they state will allow capturing of at least several hours
worth of trace data at full link utilization. Once the
traces are collected (by the disk array filling up or fixed
time period elapsing), they are stored to a 10 terabyte
storage area network and then are available for offline
data analysis. While the IPMON system has very high
goals, we believe they are also very costly goals that
are not necessary for a typical enterprise level network.
Our system also provides real-time monitoring which
IPMON does not offer.

Birch provides a “NIC-to-Disk” capture system that
captures packets directly to disk and exists entirely in
kernel-space [4]. By operating solely in kernel-space, the
NIC-to-Disk system is able to realize a drop rate 8.9%
less than the user-space equivalent. Like IPMON, the
NIC-to-Disk system captures packets directly to disk
with no real-time monitoring option.

7.2 High Speed Packet Processing
Beyond the monitoring aspects of our PNA, we also

try to process packets as quickly as possible which means
receiving the packet, performing our processing steps,
and discarding or forwarding the packets. Luca Deri
presents the best user-space capture method we know
of in his paper describing PF RING [7]. PF RING is
designed to minimize system call overhead by using a
memory mapped ring buffer shared between kernel- and
user-space. This allows the user-space application to
access packets through a shared buffer—avoiding some
system call overhead, memory copying operations, and
the standard Linux networking stack. Deri has also
written an extension to libpcap that allows existing
applications to be easily ported to the PF RING net-
working option.

Building on top of the PF RING work previously
done, Fusco and Deri [10] create a “Threaded NAPI”
(TNAPI), extending the existing Linux networking NAPI
to take advantage of multiple hardware receive queues
on multi-core systems. Using the TNAPI, a program-
mer can take advantage of every available core on a
machine for packet processing. This distribution across
many cores leads to higher packet throughput allow-
ing a PF RING and TNAPI system to operate at full
gigabit speeds. Our PNA currently only uses a single
core of a multi-core processor to achieve the through-
put discussed in this paper. In the future we plan on
pursuing methods to separate processing over multiple
cores, allowing increased throughput and monitor com-
plexity. As our approach breaks the typical flow level
distribution of allocating flows to different queues and
therefore processing core, our focus is on increasing per-

core throughput to allow higher total throughput.
Though not focused on developing new methods for

high speed packet processing, Braun et al. break down
the various user-space packet capturing methods on dif-
ferent hardware and software platforms [5]. Their explo-
rations include comparing FreeBSD to the Linux kernel,
comparing PF PACKET to PF RING, and comparing
Intel to AMD processors.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented our Passive Network Ap-

pliance that we developed and deployed on commodity
hardware in an enterprise level network. We have:

• Explained our architectural decisions to build a
kernel module that automatically provides histori-
cal network snapshots that can be analyzed offline
to provide insights into a live network.

• Provided an API that allows monitoring traffic at
the rate of network frame arrival to enforce or au-
dit policy decisions. We also describe two real-time
monitors that track IP-to-IP connections and local
IP data.

• Evaluated our PNA system under several worst
case scenarios and determined, through a deployed
PNA, that we are able to provide tangible benefits
to network administrators.

• Gave a comparison of monitoring solutions in kernel-
space versus user-space that showed, for a single-
core, a kernel-space monitor can outperform the
best user-space monitor. This is what allows our
PNA to see more packets than existing user-space
applications.

With the system infrastructure in place, we have shown
that the complete system with real-time monitors is ca-
pable of handling 438 Mbps in the worst case (64 byte
packets arriving at 1 Gbps each belonging to a unique
flow) and over 98% of packets when packets are sized
over 256 bytes—all using only a single processing core.

8.1 Future Work
We believe this work still has several interesting av-

enues for exploration. Our current push is to develop a
pipelined version that will be backward compatible with
the real-time monitors already developed. With each
real-time monitor running on its own processor, more
resources will be available to each stage allowing more
complexity without reducing the throughput of the sys-
tem. We expect the throughput of this system to be
close to the performance of the “base” kernel module.
Once each step works in a pipeline, it may be interesting
to explore the cost of moving steps onto network pro-
cessors that are optimized for fast lookups. Our hope

11



is that some combination of the above ideas and taking
better advantage of commodity resources will allow our
system get closer to 10 Gbps throughput.

In the longer term, we are working to provide a bet-
ter support infrastructure for developing real-time mon-
itors. While we find the current programming environ-
ment for developing monitor to be a step in the right
direction, we believe making a monitor should be easy
enough that a network administrator that does not have
a background in systems programming should be able
to make new monitors tailored to their network.

Acknowledgements
This paper is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS 0964201.

9. REFERENCES
[1] ArcSight ESM - Enterprise Security Manager.

URL http:
//www.arcsight.com/products/products-esm/.

[2] Netflow performance analysis. Technical report,
Cisco Systems, Inc., 2007.

[3] G. Antichi, D. J. Miller, and S. Giordano. An
open-source hardware module for high-speed
network monitoring on netfpga. In European
NetFPGA Developers Workshop, 2010.

[4] S. W. Birch. Performance characteristics of a
kernel-space packet capture module. Master’s
thesis, Air Force Institute of Technology, 2010.

[5] L. Braun, A. Didebulidze, N. Kammenhuber, and
G. Carle. Comparing and improving current
packet capturing solutions based on commodity
hardware. In Internet Measurement Conference,
pages 206–217, 2010.

[6] L. Deri. ntop: Netflow, netflow-lite and sflow
based open source network traffic monitoring.
URL http://www.ntop.org/.

[7] L. Deri. Improving passive packet capture:
Beyond device polling. In International System
Administration and Network Engineering
Conference, 2004.

[8] L. Deri. PF RING, May 2011. URL
http://www.ntop.org/PF_RING.html.

[9] C. Fraleigh, S. Moon, B. Lyles, C. Cotton,
M. Khan, D. Moll, R. Rockell, T. Seely, and
C. Diot. Packet-level traffic measurements from
the sprint ip backbone. IEEE Network,
17(6):6–16, 2003.

[10] F. Fusco and L. Deri. High speed network traffic
analysis with commodity multi-core systems. In
Internet Measurement Conference, pages 218–224,
2010.

[11] J. Gasparakis and J. Peter P Waskiewicz. Design
considerations for efficient network applications
with intel multi-core processor-based systems on

linux. Technical report, Intel Embedded Design
Center, 2010.

[12] K. Keys, D. Moore, R. Koga, E. Lagache,
M. Tesch, and kc claffy. The architecture of the
coralreef internet traffic monitoring software suite.
In Passive and Active Network Measurement
Workshop, 2001.

[13] L. B. N. Laboratory. Bro intrusion detection
system. URL http://www.bro-ids.org/.

[14] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and
H. Zang. Is sampled data sufficient for anomaly
detection? In Internet Measurement Conference,
2006.

[15] S. McCanne and V. Jacobson. The bsd packet
filter: A new architecture for user-level packet
capture. In USENIX Annual Technical
Conference, 1993.

[16] R. Olsson. pktgen the linux packet generator. In
Ottawa Linux Symposium, 2005.

[17] V. Paxson. Bro: A system for detecting network
intruders in real-time. In Computer Networks,
pages 2435–2463, 1999.

[18] V. Sekar, M. K. Reiter, and H. Zhang. Revisiting
the case for a minimalist approach for network
flow monitoring. In Internet Measurement
Conference, 2010.

[19] A. Turner. Tcpreplay. URL
http://tcpreplay.synfin.net/.

[20] C. Wiseman, J. Turner, M. Becchi, P. Crowley,
J. DeHart, M. Haitjema, S. James, F. Kuhns,
J. Lu, J. Parwatikar, R. Patney, M. Wilson,
K. Wong, and D. Zar. A remotely accessible
network processor-based router for network
experimentation. In Architectures for Networking
and Communications Systems, pages 20–29, New
York, NY, USA, 2008. ACM.

12


